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Abstract 

The paper presents general machinery for extending a duality between complete, cocom- 
plete categories to a duality between corresponding categories of semilattice representations (i.e. 
sheaves over Alexandrov spaces). This enables known dualities to be regularized. Among the 
applications, regularized Lindenbaun-Tarski duality shows that the weak extension of Boolean 
logic (i.e. the semantics of PASCAL-like programming languages) is the logic for semilattice- 
indexed systems of sets. Another application enlarges Pontryagin duality by regularizing it to 
obtain duality for commutative inverse Clifford monoids. 

1991 AMS Subj. Class.: 18A25, 18F20, 06F30, 06E15, 22D35, 43A40 

1. Introduction 

Duality theory is generally viewed as more of an art than a science. The few broad 

techniques that are available, such as the enrichment of the structure of a schizophrenic 

object [14, Section VI.4.41, tend to be of uncertain efficacy. Thus, development of a 

duality for a particular class of objects is usually the result of an ad hoc procedure, 

and may often become the source of considerable interest. 

The purpose of the current paper is to propose one general technique for obtaining 

dualities. The starting point is a duality D : 2I 7rt X : E (2.1) between two complete 

and cocomplete concrete categories. Conventionally, these are described as the cate- 

gory 2I of “algebras” and the category X of “representation spaces”. In the example 

of Priestley duality [23, 241, 2I is the category of distributive lattices and X is the 

category of compact HausdorlI zero-dimensional partially ordered spaces. The basis 

for the technique is the duality C : a T=? !B : F (2.2) between the category Sl of - 
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semilattices (commutative, idempotent semigroups) and the category 23 of compact 

Hausdorff zero-dimensional bounded semilattices. Up to juggling with constants, this is 

the duality 3 P Z between the category go of commutative, idempotent monoids and 

the category Z of compact Hausdorff zero-dimensional S&-objects. The latter duality 

was treated in great detail by Hoffman et al. [ 111. It is summarized and adapted to 

(2.2) in Section 2. 

The fundamental concept of the paper is the notion of a semilattice representation, 

as discussed in Section 3. A semilattice H may be ordered as a meet semilattice, and 

then viewed as a small category. A representation R : H ---f ‘ill is a contravariant functor 

from H to ?I. Sheaf theorists may view it as an ‘%-sheaf on the space H equipped 

with the Alexandrov topology. 

Semilattice representations in 2I form a “semicolon category” ‘& = (a; ‘WP). For 

a 2%space G, certain representations in X have a property of “2%co&uity”. The 

category 2 is the category of !&continuous representations of B-spaces. The main 

result of the paper, Theorem 4.3, then provides a duality 5 : ‘% G 2 : _@ (4.1) between 

the categories @ and 3. The proof of the theorem is the content of Section 5. If the 

initial duality (2.1) arose from a schizophrenic object T, then results of Section 6 show 

how the new duality (4.1) arises from a related schizophrenic object T”. 
Section 7 discusses application of the technique. Suppose that Cu is a strongly irregu- 

I_ar variety of algebras without constants. Then by Plonka’s Theorem 3.1, the category 

% is essentially the regularization of 2I - the variety of algebras satisfying all the 

regular identities satisfied by algebras from ‘u. (Pedantically speaking, this description 

of @ relies on identification of sheaves with bundles.) In this context, the technique of 

the paper may be described as the regularization of the initial duality (2.1) to obtain 

the new duality (4.1). Example 7.1, duality for left normal bands, is the regularization 

of Lindenbaum-Tarski duality between sets and complete atomic Boolean algebras. 

Lindenbaum-Tarski duality shows that Boolean logic is the logic for sets in the classi- 

cal sense. Regularized Lindenbaum-Tarski duality then shows that weak Boolean logic 

is the logic for semilattice-ordered systems of sets. Guzman [9] has recently discussed 

the role of weak Boolean logic in the semantics of programming languages such as 

PASCAL that decline to evaluate expressions as soon as any possibility of doubt arises. 

Regularized Lindenbaum-Tarski duality recovers Guzman’s characterization [9, Theo- 

rem 3’1 of functions representable in weak Boolean logic. Example 7.2 recalls the 

duality for doubly distributive dissemilattices obtained [8] by using “the technique of 

Ptonka sums in duality theory” [S, p. 2481. Although this duality is regularized Priest- 

ley duality, it was noted [8, p. 2481 that the “dualization of Plonka sums (could not 

be made) completely explicit” at the time of writing [8]. The present paper arose from 

the attempt to make the dualization of Plonka sums more explicit. 

The final Section 8 of the paper regularizes Pontryagin duality to obtain a duality 

for commutative inverse monoids that are semilattices of groups (Clifford semigroups). 

This regularization has to be based on the commutative idempotent monoid duality 

3 F! z rather than the commutative idempotent semigroup duality Sl 8 %3. In a 

paper laying the foundation for harmonic analysis on commutative semigroups, Hewitt 
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and Zuckerman wrote [ 10, p. 701: “[W]e state no theorems concerning . . . analogues 

of the Pontryagin duality theorem . . . . We hope to deal with th[is] topic in a subse- 

quent communication.” Austin’s 1962 Ph.D. thesis provided a basis for that subsequent 

communication [l], but did not present a full duality. Regularized Pontryagin duality 

(8.2) now gives full duality for strong semilattices of abelian groups. 

The category theory used in this paper generally follows [16], while [2.5] provides 

a reference for universal algebraic notions such as regularity and replication. With the 

exception of inverse images, limits, and infima, maps and functors are generally written 

to the right of their arguments (as in the factorial) or to the upper right (as in the 

square). The advantages of this break with unfortunate convention are the elimination 

of brackets and the ease of reading concatenated mappings, e.g. (4.9), in the natural 

order from left to right. 

2. Duality for algebras and semilattices 

The archetypal form of duality considered is represented as 

D:‘U+X:E. (2.1) 

Here 2I is a complete and cocomplete concrete category of algebras, e.g. a variety of 

algebras considered as a category with homomorphisms as arrows, while 3E is a concrete 

category of representation spaces for ‘U-algebras. There are (covariant) functors D : 
$X + XoP and E : 3ZoP -+ ‘9I furnishing an (adjoint) equivalence between 2I and Xop 

(as in [ 16, Theorem IV.4.11). Normally, one considers D : 5X + X and E : X + 2I as 

contravariant functors. 

One example of (2.1) is fundamental: that of semilattices. It takes the form 

C:S&OVF. (2.2 1 

Here &l is the variety of semilattices. A B-space, i.e. an object G of 23, has tradition- 

ally been defined topologically, as a compact Hausdorff zero-dimensional topological 

bounded semilattice. A bounded semilattice in this sense is a meet-semilattice hav- 

ing a least element 0 and greatest element 1 selected by nullary operations. The 2% 

morphisms are continuous homomorphisms of bounded semilattices. The two-element 

meet-semilattice 2 = (0 5 1) is an object of g. Equipped with the discrete topology 

and nullary operations O,l, it becomes an object 2 of B. For a semilattice H, the 

23-space HC is defined to be the closed subspace a(H,L?) of the product space zH. - 
Elements of HC are called characters of H. For a semilattice homomorphism f : HI + 
Hz, the B”P-morphism f C is defined as HzC --f HI C; 0 H f 0. For a 23-space G, the 
semilattice GF is defined to be the subsemilattice 23(G, 2) of the semilattice reduct of 

the product 2G. For a B-morphism f : G1 4 G2, the semilattice homomorphism fF 

(strictly: pp”F [16, Section 11.21) is defined as GzF --t GIF : 8 H f 8. The duality 



292 A. B. Romanowska, J. D. H. Smith I Journal of Pure and Applied Algebra 115 (1997) 289-308 

between SJ and B is covered explicitly in [7, p. 158; 6, p. 281. It is closely related to the 

duality between the variety E& (cf. [22, p. 1421) of monoids whose semigroup reducts 

are semilattices and the category Z of compact Hausdorff zero-dimensional s-algebras. 

The latter duality is treated (concisely in [14, Section VI.3.61 and) very thoroughly in 

[l 11, albeit in terminology less well suited to the present context. Semilattices are 

called “protosemilattices” there, while the term “semilattice” refers to s-algebras. 

The category Sl_ is denoted there by 8. Many results carry over from [l 11, mutatis 

mutandis, as summarized below. 

The characteristic function of a subset 0 of a semilattice (H,.) 

(H, .) iff the subset 0 is a wall of (H,.), i.e. iff 

is a character of 

‘dh,k E H,(h . k E 0) M (h E O,k E 0) (2.3) 

[27, Prop. 2.21. In meet semilattices, walls are often described as “filters” (cf. [ 1 1, 

Definition 11.2.1]), while in join semilattices they are often described as “ideals” (cf. 

[26, Definition 4.11). Let HW denote the set of walls of H. 

Proposition 2.1. Under intersection, HW forms a subsemilattice of the power set of 

H. Moreover, there is a natural B-isomorphism 

HC ---) HW; x H x-‘{ 1). (2.4) 

Proof. Cf. [ll, Proposition 11.2.4(ii)]. The zero element of HW is the empty wall. 

0 

As a partially ordered set, each ‘B-space is a complete (indeed algebraic) lattice [ 11, 

p. 391. A subset X of a ?&space G is a cover of an element g of G iff g 5 supX. An 

element c of G is compact if it is non-zero, and if each cover of c contains a finite 

subcover. Let GK denote the set of compact elements of G. 

Proposition 2.2. In a %-space G, the set GK of compact elements forms a join semi- 

lattice (i.e. a finitely cocomplete subcategory of the meet semilattice G, but not 
necessarily having an initial object ). 

Proof. See [3, Theorem VIII.& 11, Proposition II.1 .lO, Theorem 11.3.31 or [25, p. 641. 
0 

For an element h of a semilattice H, the wall [h] is the intersection of all the walls 

of H containing h. Such a wall is called principal. 

Proposition 2.3. For a semilattice H, an element 0 of HW is compact cff it is prin- 

cipal. Then there is a natural isomorphism H + HWK; h w [h]. 

Proof. See [ll, Proposition 11.3.8; 25, 344(i)], or [26, Theorem 5.11. The latter two 

references apply on considering the variety of stammered semilattices [25, 3271. •1 
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In the other direction, one has the following. 

Proposition 2.4. For a ‘B-space G, there is a natural isomorphism 

yo:G+GKW;gHGKnLg. (2.5) 

Proof. Cf. [ll, Proposition 11.3.91. The zero element of G maps to the empty wall: 

each compact element of G is strictly bigger than zero. 0 

Given a !&morphism f : G1 + Gz, a semilattice homomorphism is defined by 

fK : G2K -+ G,K; c H inf f -' t c. (2.6) 

Proposition 2.5. There is a contravariant functor K : 23 -+ g given by Proposition 
2.2 and (2.6). For a 23-space G, define 

KG : GF -+ GK; 8 H inf F’{ 1). (2.8) 

Then K : F-%K is a natural isomorphism. 

Proof. See [ll, Theorem 11.3.7 and Proposition 11.3.20]. 0 

A final result on %-morphisms is needed. 

Proposition 2.6. Let f : GI + G2 be a 23-morphism, and let c be a compact element 
of G7.. Then cfKf = inf{(f-’ 1 c)f} > c. 

Proof. See [ 11, Theorem 11.3.221. q 

3. Plonka sums, sheaves, and bundles 

Let H be a meet semilattice. Now H may be considered as an algebra (H, .), as a 

partially ordered set (H, <.), or as the set of objects of a small category with H(h,k) = 

{h -+ k} for h 5.k and IH(h, k)l = 0 otherwise. Additionally, H is a topological space 

under the Alexandrov topology 0(H) on the dual poset (H, 2.) [ 14, 11.1.81 consisting 

of subordinate subsets of (H, 5.). The poset (H, I.) may be identified with the subposet 

{L W E H] of WW),~) consisting of principal subordinate subsets. In this guise, 

the semilattice H reappears as a basis for the Alexandrov topology a(H). Since the 

elements of H are join-irreducible in a(H), the condition [17, 11.1(9)] for a presheaf 

on H to be a sheaf is trivially satisfied. By the Comparison Lemma for Grothendieck 

topoi [17, Theorem 11.1.3 and App., Corollary 3(a)], the functor category i) = &tHoP - 
(of presheaves on H) is equivalent to the category a(H) of sheaves (of sets) over the 

space H under the Alexandrov topology R(H). By[17, Corollary 11.6.31, the category 

Sh(H) is in turn equivalent to the category =H of &tale bundles x : E + H over 
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the space H. Given a representation (presheaf) R : H ---f f&t, the corresponding bundle - 
rc : E + H (or more loosely just the total space E) is the bundle RA of germs of the 

sheaf R : R(H) ---f @. - 
An alternative, purely algebraic description of the equivalence between semilattice 

representations and ttale bundles may be given. The variety k of left trivial or left - 
zero bands is the variety of semigroups satisfying 

x*?;=x (3.1) 

[12, p. 119; 25, 2251. The category k is isomorphic to the category Set of sets. 

In one direction, forget the multiplication (3.1). In the other direction, the multi- 

plication on any set is just the projection (x,y) H x from the direct square. The 

variety & of Ieft normal bands is the variety of idempotent semigroups (bands) 

satisfying 

s*y*z=x*z* y (3.2) 

[12, p. 119; 25, 2231. The bundle 1~ : E ---) H of a left normal band (E,*) is its 

projection onto its semilattice replica (H,*) [25, p. 171. One obtains a corresponding 

representation 

ET : H ---t &t;h I-+ x-‘(h), (3.3) - 

defined on the morphism level by (h + k)ET : n-‘(k) -+ ?~-~{h};x H x * y for any 

y in ~‘{h}. In the other direction, a presheaf or representation 

R:H+&t - 

gives a contravariant functor 

(3.4) 

R:H+(*) (3.5) 

from the poset category (H, <* ) to the category (*) of groupoids or magmas (sets 

with a binary multiplication) and homomorphisms. Here (3.5) is obtained from (3.4) 

on interpreting each set hR as the left zero band (hR, x). The ftmctor (3.5) summa- 

rizes the data for a construction known in semigroup theory as a “strong semilattice” 

[5; 12, p. 901 and in general algebra as a Pionka sum [18; 25, 236; 221. Defining 

rr = lJhEH(hR -+ {h}) and 

X*y=X(XX*yZ__tX=)R (3.6) 

for x, y in E = lj hEHhR gives the bundle 

RA:E+H (3.7) 

of a left normal band (E,*). The constructions r of (3.3) and /i of (3.7) extend to 

functors providing an equivalence 

A:ib(bH)Y -’ (3.8) 
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between the presheaf category k for a fixed semilattice H and the comma category 

(Ln,H) of left normal bands over H (cf. [16, Section 11.61). The equivalence (3.8) is 

an algebraic analogue of the equivalence 

A:S&M~H:r (3.9) 

of sheaf theory [14, Corollary V.lS(i); 17, Corollary X6.31. 

The algebraic equivalence (3.8) may be extended. Let g be a category whose objects 

are small categories and whose morphisms are functors. Let e be a category. Then 

one may define a new category (C;D), called a “lax comma category” or semicolon -- 
category, as follows. Its objects are covariant functors R : C + e from an object 

C of C to Q. Given two such objects R : C -+ g and R’ : C’ + D, a morphism 

(a,f) : R L R’ is a pair consisting of a g-morphism f : C + C’ and a natural 

transformation c : RifR’. The composition of morphisms in (C;O_) is defined by 

(c>f)(?g) = (4fT)yfg) (3.10) 

(cf. [ 11, Section 0.1; 16, Example V.2.5(b)]. Note that Mac Lane used the name 

“supercomma” and the symbol J in place of the semicolon). For a concrete category 

Q, let (a; LJ’P)’ denote the full subcategory of (&l; Dop) comprising the representation -- 
(p+D=“p 

-- 
and representations of non-empty semilattices in the full subcategory of goi’ 

consisting of non-empty Q-objects. Then the equivalence (3.8) may be extended to the - 
equivalence 

ft : (Sl; SetoP)’ P Ln : r. (3.11) -- = 

Consider a left normal band morphism F : E -+ E’, with semilattice replica f : H ---t 
H’. Define R = ET : H + &t and R’ = E/T : H’ -+ &t. A natural transformation - 
cp : RifR’ is defined by its components 

(P,,:hR+hfR’;x++xF (3.12) 

at objects h of H. The (Sl; SetoP)-morphism FT : ET + E’T is then defined as the pair -- 
(q, f ). Conversely, given such a pair as an (Sl; SetoP)-morphism, a left normal band -- 
morphism F = (cp, f )A : RA --+ R’A is defined as the disjoint union of the components 

(3.12). 

The general equivalence (3.11) may be lifted to other contexts. Of particular in- 

terest in the current context is the case of a strongly irregular variety B of finitary 

algebras, considered as a category with homomorphisms as morphisms. A variety 23 is 

said to be strongly irregular if the 2%algebra structure reduces to a left trivial semi- 

group [22, Section 4.81. For example, the variety of groups (as usually presented with 

multiplication and inversion) is strongly irregular by virtue of x * y = (xy)y-i. The 

regularization B of any variety 23 of finitary algebras is defined to be the variety of 

algebras satisfying each regular identity of B. (Recall that an identity is regular if it 

involves exactly the same set of arguments on each side [25, p. 131.) Then Plonka’s 

Theorem describing regularizations of strongly irregular varieties [18; 19; 22, 4.8 and 

7.1; 25, 2391 may be formulated as follows. 
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Theorem 3.1. Let 23 be a strongly irregular variety of algebras whose type contains 
no constants. Then the equivalence (3.11) lifts to an equivalence 

n:@;Wp)‘*kr. (3.13) 

Corollary 3.2 (Ptonka [21] and Plonka and Romanowska [22]). Let 230 be a strongly 

irregular variety of algebras whose type contains exactly one constant. Then the 
equivalence (3.11) lifts to an equivalence 

n:(S1,;2J;p)* &:r. (3.14) 

Now consider the duality (2.1). Motivated by (3.13), one writes 

G = (sl;WP) (3.15) - 

for the category of (contravariant) representations of semilattices in Cu. Such repre- 

sentations R are often implicitly identified with the corresponding bundles R/i. For a 

B-space G, a representation R : G -+ X is said to be B-continuous if 

gR = lim(R : GKn 1 g -+ X) (3.16) 

for each element g of G. (The limit on the right-hand side of (3.16) is the limit 

of the restriction of R to the upwardly directed ordered subset of G consisting of 

compact elements below g.) The category 2 is then defined to be the full subcategory 

of (23; X Op) consisting of 2%continuous (contravariant) representations of !&spaces in 

X. As for 6, such representations R are often identified with the corresponding bundles 

RA. 

4. Duality for semilattice representations 

Given a duality (2.1) between complete and cocomplete concrete categories 9.I and 

X, this section sets up a duality 

Zj:&&:E (4.1) 

between the category @ of representations in Cu and the category f of 2%continuous 

representations of B-spaces in X. The main task is to define the contravariant functors 

fi and E. 

To begin, consider an ‘%-algebra given by a contravariant Pfonka fimctor R2 : 
Hz --f ‘2I. For each character 0 of the semilattice Hz, this functor restricts to a con- 

travariant functor R2 from @‘{ 1) to the cocomplete category 2I. The dual object 

(R2 : Hz -+ ‘9l)fi is then defined as the representation H2C -+ X sending each character 

8 to the dual space [lim(Rz : O-‘{ 1) + ti)]D of the colimit of the corresponding 

restriction. Thus, 

(R2 : H2 + %)z, = (H2C --) X; 0 H [li$R2 : 8-l { 1) -+ ‘%)]D). (4.2) 
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Now consider an ‘%-homomorphism f, i.e. a pair (cp,p) consisting of the semilattice 

replica f” : HI + Hz of f and a natural transformation cp : R,Gf”Rz between 

the domain representation RI : HI + ‘3 and the composite of fx with the codomain 

representation R2 : H2 4 2l. The dual morphism (cp, fX)o is a pair (r, PC) consisting 

of the dual f”’ : H2C -+ HlC off” and a natural transformation r : R&kf”cR16. 

For each character 0 of Hz, consider the functors 

(70,-‘{ l}A2I 

fnl 
(4.3) 

s-‘{l}7+” 

together with the natural transformation cp : RI GfXR2. They determine an ‘$I-homo- 

morphism 

Li_r$cp,f’)s : @(RI : (f”O)-‘{ 1) + ‘9I) -+ lin_r(Rz : O-‘{ 11 -SC) (4.4) 

(cf. [ 11, Lemma 0.1.3; 16, Example V.2.51). Applying D to (4.4 

Lim(cp, f’)oD which gives the definition of Q. Thus, 

) yields an X-morphism 

(cp,fYDx = (L$(cp,.Y)DJ’?. 

One obtains 

(4.5) 

Proposition 4.1. There is a contravariant jiunctor 5 : ‘% -+ 2 defined by an object 
part (4.2) and a morphism part (4.5). 

Proof. It must first be shown that the representation defined on the right hand side 

of (4.2) is an object of k, i.e. that ORi = lim(RF : HCKfl 1 f3 + X) for ~9 in H2C. 

To this end, it is convenient to identify charzers 8 of H with the walls 8-l{ 1) that 

they determine, according to (2.4). Under the identification, HCK is the set of 

principal walls (Proposition 2.3). For an element h of H, with corresponding principal 

wall [h], one has [h]Rp = [lg(Rz : [h] + 2I)]D = hR2D. Then for an arbitrary wall 

0 of H, it follows that lim(RF : HCKn 1 0 + X) = lim(RF : {[h]lh E 0) --+ X) = 
- 

lim(R2D : 0 + SE) = [lim(Rz : 0 -+ W)]D = OR?, as required. The penultimate 

e&ality holds since the functor D : ‘$I -+ Xop, having E : X Op -+ Cu as a right adjoint, 

preserves colimits [ 16, Section V.51. 

Explicitly, (4.2) only defines the object part of a representation R# : H2C + X. 

Thus, consider an H2C-morphism x -+ 0, corresponding to an embedding j : x-’ { 1) -+ 

8-l { 1). Together with the identical natural transformation I : R2ijRz between 

R2 : x-‘(l) -+ 2I and x-‘(l) 2 8-l { 1) 5 ‘9X, the embedding j determines an 

M-morphism 

L&( 1, j) : 15(R2 : x-l { 1) --) 9X) - linJR2 : 8-l { 1) -+ a). (4.6) 
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Applying D to (4.6) yields the X-morphism that is the image of x -+ 0 under R$. 

The naturality of the transformation r = Lim(cp,f”)D of (4.5), in the form of the 

commuting diagram 

(4.7) 

9) 

in X, is obtained from the commuting diagram 

(R, : (f”x)-‘{ I} + $BJn! (R2 : f-‘{ 1) 

(1.j) 
I I C1.j) 

(R, : (f”e)-‘{I}4),;j (R2 : 8-‘{I}-8) 

(4.8) 

by successive applications of the fimctors Lim and D. The funtoriality of 5 is routine. 
- 

0 

The definition of E on an object R : G ---f X of 2 is quite direct. Recall the natural 

isomorphism KG : GF -+ GK between the meet semilattice GF dual to the ‘B-space G 

and the join semilattice GK of compact elements of G (Proposition 2.5). The composite 

of KG with the order-preserving embedding j : GK -+ G of the poset GK in G gives a 

contravariant functor Koj : GF + G. The definition of ,!? on objects is then given by 

(R : G -+ X)E = (KGj.RE : GF + a). (4.9) 

The right-hand side of (4.9), as the composite of three contravariant functors, is con- 

travariant. It thus forms a representation of the semilattice GF in ‘u, determining an 

‘%-algebra. Now consider an %morphism 

f = ((p,f’) : (R1 : G1 --) X) + (R2 : G2 -+ X) 

comprising a B-morphism fT( : Gt -+ G2 and a natural transformation cp : RI if ‘R2. 

The morphism part of k will be specified by 

cAJ."F= w-=FF), (4.10) 

where fzF is the dual of fn and r : KG2 j&E* f tiKo, jRtE is a natural tranSfOrma- 

tion. Towards the definition of z, recall the commutative diagram (cf. Proposition 2.5) 

KG2 

G2F - G2K 

iq 
I 

/ nK 
(4.1 I ) 

G,F- G,K . 
% 
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For a compact element c of G2, one has cf liK = inf f ‘-‘Tc (2.6). Moreover, cf “Kf7( > 

c by Proposition 2.6. Define CJ~ to be the composite of the component of cp at cf nK 
with the image of the Gz-morphism c --t cf nKfn under Rz. Then crc is the component 

at c of a natural transformation cr : f “KR1 jR2. Indeed, for a GlK-morphism d + c, 

there is a commutative diagram 

cfnKR, ‘P,/nK CfnKfnRt W-W~~~/~)R~ 
- cRz 

I I I 
dfnKR,G dfnKf”R2 -dR2, 

(d-+djtid(/‘)Rz 

(4.12) 

The left-hand square commutes by the naturality of cp : (RI : Gi + X)-+f ‘RZ : 
G1 + X). The right-hand square is the image under R2 of the commutative square 

c_f”:f” - c 
+ 

in G?. The natural transformation t of (4.10) is now given as 

I I 
dfHKf” c-d 

(4.13) 

z = xo2aE: xo,jR2E*xazfxKjR1E = fnFuo,jR,E, (4.14) 

the identity of the codomain functors following by the commuting of (4.11). In 

summary, 

Proposition 4.2. There is a contravariant functor ,!? : % -+ %. Its object part is given 
by (4.9). Its morphism part is given by (4.10) and (4.14). 0 

The main theorem of the paper may now be formulated. Its proof is presented 

separately in the following section. 

Theorem 4.3. Suppose given a duality (2.1) between a complete, cocomplete concrete 
category 2l of algebras and a concrete category X of representation spaces. Then the 

functors 6 of Proposition 4.1 and k of Proposition 4.2 yield a duality (4.1) between 
the category %!I = (a; ‘W’) and the full subcategory 2 of (23; Xop) consisting of 
!&continuous representations. 

5. Proof of the main theorem 

This section is devoted to the proof of the main Theorem 4.3. In the given duality 

(2.1), there is a natural isomorphism E : lx+DE. In the duality (2.2) for semilattices, 

there is a natural isomorphism I : lsi+CF. The first half of the proof shows that 

there is a natural isomorphism E : l;=+fig given by its component 

:R = (RE, 1~) (5.1) 
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at an object R : H + N of 9I. Consider the diagram 

HR-21 

IH 
I (5.2) 

HCF-‘U 
/(Lit 

in which the bottom row factorizes as 

R” 
HCF=+HCK&HC+XA% (5.3) 

according to (4.9). Start with an element h of H, and chase it along QR Eo. In passing 

from H to HC, it is again helpful (as in the proof of Proposition 4.1) to realize HC 

as the meet semilattice of walls of H according to (2.4). Thus, h appears in HCK as 

the principal wall [h] (Proposition 2.3). Under j, this wall maps to the element 

(PI -+ 11)) 0 (W - VI) + (0)) (5.4) 

of HC. Under R’, (5.4) is represented as the %-algebra [lirrJR : [h] + ‘i!I)]D = hRLI. 

Thus 

htHRDIz = hRDE, (5.5) 

whence (RE)~ = (EhR : hR 

To verify the natural@ 

-- 
+ hz,yRDE) is an isomorphism. 

of E, consider an 2I-morphism 

The commuting of the diagram 

-- 
RARDE 

(5.6) 

(5.7) 

is required, where (r,fCF) = (Lim(cp,f)D, f ‘)E. For each element h of H, this 

amounts to reqUiting the equality EhRrh@, = (PhEhf,?R’. Since (Ph&hfR’ = EhR(Ph DE, it suffices 

to prove that 

ThzH = cphD% (5.8) 

the domains of the respective sides of (5.8) being given by the corresponding sides of 

(5.5). Consider the commuting diagram 

hR 
cph 

+ hfR’ 

I II 
lim(R: f-‘[hf]-2I)- lim(R’ : [hf]- ‘3) 

Lim(vJ)[hjl + 

(5.9) 
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in ‘%, where the first column is the natural map to the colimit. Applying the mnctor 

D to (5.9), one obtains the equality 

involving the natural transformation g used in 

nent r of (r,fCF) = (Lim(cp, f)D, fC)E. The 

by applying the fi.mctorE to (5.10). 

(5.10) 

the definition (4.14) of the first compo- 

required equality (5.8) is then obtained 

On the other side, the duality (2.1) includes a natural isomorphism q : l%-AED. 

The duality (2.2) for semilattices includes a natural isomorphism y : 1~3iFC (cf. 

Proposition 2.4). The second half of the proof shows that there is a natural isomorphism 

q : ~JE++I!?D given by 

VR = (Rv],yG) (5.11) 

at an object R : G -+ X of 2. Consider the diagram 

GR’f 

YG 
I 

GFC 3X 
(5.12) 

in which the bottom row appears as 

Start with an element g of G, and chase it along ~GR”. Set 8, = gyo, i.e. xBs = 1 H 

gx = 1 for x in GF. Note {x E GFlgx = 1)~ = GKfl 1 g. Then 

gycREIDx= O,R” = [lim(KojRE : 6,’ { 1) -+ ‘%)]D 

= [lim(%$RE : {xlgx = 1) --) ‘S)]D 

= [lim(RE : GKn J. g + %)]D 

= [lim(R : GKn J, g -+ X)]ED = gRED. 

The penultimate equality holds since E : X -+ ‘iW’, having D : ‘VP 

adjoint, preserves limits [16, Theorem V5.11. Thus (Rq), = ffgR : gR - 

isomorphism. 

To verify the naturality of v, consider an X-morphism 

(cp,f):(R:G+X)-+(R’:G’+X). 

+ X as a left _- 
gyGRED is an 

(5.14) 
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The commuting of the diagram 

(%f) 
I I 

I L’“1’ r.fF JD.fFc J (5.15) 
_- 

RI----+ R’ED 
i,P 

is required, where (T, f F, = (cp, f )E. For each element g of G, this amounts to requir- 

ing the equality q&L&$t, fF)D],,, = ‘psqgfR’. Since qgqgfR’ = qgR(P;DD, it suffices to 

prove that 

[Lim(r, f”Pl,,, = R+A (5.16) 

the domains of the respective sides of (5.16) being equal as noted above. Let k be a 

compact element of G’ below gf. Since g E f -’ 7 k, one has kfK = inf f -‘fk I g 

in G. Consider the diagram 

lim(R:GKfl~g--+X)=gR-%g.fR’-_ l@(R’ : G’Kn 1 (gf) --+3E) 

I I I 
kfKR= gR + k_f”fR’ P kR’ 

VLIK 
(5.17) 

in X, where all four unlabelled morphisms are representations of unique morphisms in 

the semilattices G and G’. The left-hand square commutes by naturality of cp : RifR’, 

while the right hand square commutes since R’ represents G’ in X. The equalities hold 

since R and R’ are objects off. Now the bottom row of (5.17) is the component at k 

of the natural transformation c : fKR AR’ used in the definition (4.14) of (r, fF) = 
(q, f )E. Considering the diagram (5.17) as k ranges over G’Kn J, (gf ), one obtains 

‘Py = [L2(% f K )I(GKnlg). Applying the limit-preserving ftmctor E : X ---f ‘W’P gives 

‘P& = ]L&n(r, f F )IsvG. Applying D then gives the required equality (5.16), completing 

the proof of the theorem. 

6. Schizophrenic objects 

In many cases, the functors of the duality (2.1) are represented by a schizophrenic ob- 

ject [6; 14, Section VI.4.11. (The terminology is attributed to Simmons [14, 

p. 2681.) The schizophrenic object T appears simultaneously as an object T of 2I 

and as an object T of X, in such a way that there are natural isomorphisms 

,J : D-;2l( ,T) (6.1) 

and 

p : E-;X( ,_r>. (6.2) 
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Moreover, the underlying sets of r and ,T coincide (with T). Also oo := To is 

“schizophrenic”, as the terminal object of ‘Ql or X. Examples are furnished by the 

Two-element semilattice 2 in the duality (2.2) and the one-dimensional Torus [w/Z 

in Pontryagin duality. Given a schizophrenic object T for the duality (2.1), and the 

terminal object cc of VI or X, there is a representation 

J:l I (6.3 1 

o-co 

that may be interpreted either as an object J_ or TW(= J/1) representing 2 in rU, or 

as an object f or TW(= JLI) representing 2 in X. The common underlying set J/I is N N 
denoted TO”. 

Theorem 6.1. Zf T is a schizophrenic object for the duality (2.1), then T” is a 

schizophrenic object for the duality (4.1). 

Proof. The first half of the proof sets up a natural isomorphism 

x : c+G.i( ,J_). (6.3) 

For a representation R : H -+ 2I in 2l, the g-object ‘%(R,J) is the representation 

‘%(R,J_) : HC + X; 8 I-+ 2I(li++1~~),T). (6.4) 

Indeed, in the corresponding fibration of %(R,.T) over g(H,z) = HC, the fibre over a 

character 8 of H is nat (R, OJ) x { 0) 2 nat (R, U) 

62 nat (Rl0-l{l},(eJ_)I0-1{,)) 

g nat (Rle-ll,),A, : Oh’{ 1) + 2I) 

g Iu (lim+ijr),21). 

The second natural isomorphism follows since 00 is terminal in ‘8, while the last 

natural isomorphism follows from the definition of the colimit [ 16, 111.4(3)]. Then the 

component of (6.4) at R is an %:-morphism 

XR = (7,lHC). (6.5) 

Here the natural transformation 7 : Rk-+l~c~(R,J) has the natural isomorphism 

(6.6) 

as its component at the character 0 of H. 
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The other half of the proof sets up a natural isomorphism 

p : e-q ,_T). (6.7) 

For a representation R : G ---) X in f, the ‘%-object X(R,J) is the representation 

%R,_J) : GF --t 2l; 0 ++ X(hcGjR,~). (6.8) 

Indeed, in the corresponding fibration of g(R,J) over 23(G, 2) = GF, the fibre over 

a character 0 of G is nat (R,8?) x (0) 2 3Z(l&R/0-l~1),~) L I((inf 8-‘{l})R,_T) E 

X(hcGjR,_T), where the first natural isomorphism follows as above. Then the compo- 

nent of (6.8) at R is an @-morphism 

PR = (% 1GF). (6.9) 

Here the natural transformation cp : Rk i ~G,cZ?(R,J) has the natural isomorphism 

as its component at the character 0 of G. 0 

7. Applications 

This section discusses two typical applications of the general Theorems 4.3 and 6.1. 

In these applications, the category % of (2.1) is a strongly irregular variety !XJ of 

finitary algebras without nullary operations, so that (by Theorem 3.1) (u comprises the 

regularization (r, of the variety defined by the regular identities of 8. Moreover, the 

duality (2.1) arises from a schizophrenic object T, so that 2J is the closure ISP{T} of 

the singleton class {T} under the closure operations P of power, S of subalgebra, and 

I of isomorphic copy. The representation space ,T is a compact Hausdorff algebra with 

closed relations. These relations on T are subalgebras of powers of T with respect to 

the algebra structure on T given by 1. Moreover, operations o : T” + T from 1 give 

elements of X(T”, T). Then the category X is the closure ISP{_T} under the closure N N 
operations P of power, S of (closed) substructure, and I of isomorphic (homeomorphic) 

copy. (Thus the duality (2.1) is of the type described in [6, Section 11, although Davey 

concentrates on the case of finite T.) By Theorem 4.3, there is a duality (4.1) for the 

category ‘k By Theorem 6.1, this duality arises from the schizophrenic object T”. 
As ,T~ in 2, the schizophrenic object is a compact Hausdorff (topological) algebra 

with closed relations, and 2 = ISP {TOO}. This characterization of 2 describes the 

class in terms of properties of T”. As illustrated in the following examples, one may 
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often isolate a finite set of such properties to obtain appropriate axiomatizations of the 

representation spaces. 

Example 7.1 (Duality for left normal bands). Here 6 is the variety z,in of left normal 

bands (3.2) [12, p* 119; 25, 2231, while ‘I) is the variety 2 of left Go bands (3.1) 

[12, p. 119; 25, 2251, isomorphic to the category &t of sets. Thus the duality (2.1) - 
is the duality between sets and compact Hausdorff zero-dimensional Boolean algebras 

[14, VI.4.6(b)]. The schizophrenic object T is the two-element left zero band 1 or the 

two-element discrete topological Boolean algebra T. Now Boolean algebras may be de- 

scribed as algebras with binary meet and join operations and a unary complementation, 

satisfying the identities for distributive lattices along with 

(x v y)' = x’ A y’; 
x” = x; (7.1) 
xV(xAx’)=x 

and 

x A x’ = y A y’. (7.2) 

Then the regularization G of the variety Bool of Boolean algebras consists of 

doubly distributive dissemilattices [25, p. 1091 (i.e. non-absorptive distributive lattices) 

equipped with an additional unary operation ’ satisfying (7.1) and 

(xAx’)V(yAy’)=xAx’AyAy’ (7.3) 

[20; 22, 7.61. The schizophrenic object T” of Theorem 6.1 has three elements. As 

TOO, it is a left normal band. As _T*, it is a finite discrete topological regularized 

Boolean algebra, with its three elements c1 (“tilt”) from co and 0 (“false”), 1 (“true”) 

from T selected as constants by nullary operations ca,cs and cl respectively. Thus 2 

is axiomatized as the class Stone B%ls of compact Hausdorff zero-dimensional I$& 

algebras with 3 nullary operations c,, CO, cl satisfying 

One obtains the duality 

xV(xAco) =x; 

coVx=x=xAcl; 

c,vx=c, =xAc,; (7.4) 

co V (co Ax) = cl Vx =+x = c,. 

Ln( ,TW) : Ln + Stone B%l * Stone B%l ( - - ----3’--3 -- 
,_T~) (7.5) 

for left normal bands that may be regarded as the regularization of Lindenbaum-Tarski 

duality (cf. [14, VI.4.6(a),(b)]. The algebra ,Too is well known under various names 

such as the “weak extension of Boolean logic” [9, 151 and the “Bochvar system 
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of logic” [2, #082#; 41. Guzmin [9, Theorem 3’1 characterizes the clone of (the algebra 

reduct of) ,T~ as the clone of operations preserving a certain ternary relation pw. As 

PW = {(alya2,a3)bl = a2 * a3 in (TM,*)), (7.6) 

this characterization arises as a consequence of the role of the schizophrenic object 

Tm in the duality (7.5). 

Example 7.2 (Regularized Priestley duality). In [8, Theorem 7.51 a duality was ob- 

tained for the variety Dd of doubly distributive dissemilattices (cf. Example 7.1 above, 

[25, p. 1091) that is the regularization of the variety of distributive lattices. This du- 

ality is a regularization (in the current sense) of Priestley duality between distributive 

lattices and compact Hausdorff zero-dimensional partially ordered spaces. The example 

was critical in motivating the current work. 

8. Regularized Pontryagin duality 

The examples of Section 7 illustrated how Theorems 4.3 and 6.1 could be used to 

obtain regularizations of Lindenbaum-Tarski and Priestley duality. The main theorems 

are based on the duality (2.2) between SJ and 8. The theorems applied to the regular- 

izations ‘% of Section 7 because the algebras in the original varieties B there had no 

nullary operations in their type. In attempting an analogous regularization of Pontryagin 

duality, it would be necessary to construe abelian groups without constants (cf. [19]). 

The variety B would then include the empty model as initial object. In essence, B 

would be the variety of abelian quasigroups in the sense of [ 13, Section 21. Taking 

the circle group T = [w/Z as schizophrenic object, however, Pontryagin duality does 

not apply to this variety !I3. For example, both the empty and the trivial quasigroup 

have a unique B-morphism to T. Thus both are represented by the trivial quasigroup. 

Indeed, one is left with the 

Problem 8.1. Find a duality for abelian quasigroups. 

The attempt to regularize Pontryagin duality may be renewed by consideration of 

some history. In 1956, Hewitt and Zuckerman raised the question of extending Pon- 

tryagin duality to commutative semigroups [lo, p. 701. A partial answer was given by 

Austin [l] in his 1962 Ph.D. thesis. However, as Austin wrote [l, p. 2531: “Lacking 

[separation] results, we are forced to introduce the hypothesis that [the dual of a com- 

pact object] separates points, and we are unable to prove an analogue of [the isomor- 

phism of a discrete object with its double dual].” Despite this lack, Hofmann et al. [ 11, 

p. 271 acknowledged Austin’s work as “the forerunner for a character and duality the- 

ory for semilattices” in their own very satisfactory duality theory between Sl_ and Z 

(cf. Section 2). Risking revisionism, one may view the duality between $,J, and Z as 

part of the continuing search for extensions of Pontryagin duality. In this vein, one 
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could adapt Theorems 4.3 and 6.1 to be based on 3 Z? z duality instead of $l ti 23 

duality. The changes necessary would be comparable to those made in the reverse 

direction in Section 2. 

With Theorems 4.3 and 6.1 suitably modified to be based on the S&, F? Z duality, one 

may consider the traditional variety & of abelian groups with the zero element selected - - 
as a constant, One then obtains the variety Ab, of commutative inverse semigroups 

with identity 0 satisfying 

1 

-(-X) =x 

-(X + y) = (-x)+(-y> 
x-x+x=x 

(8.1) 

x+0=x 

[21; 22, Section 111. By Corollary 3.2, 5, as the class of Plonka sums with constants 

of &-algebras over S&,-semilattices [21; 22, Theorem 11.1(b)], is equivalent to the - 
semicolon category (S&; A&OP) of contravariant representations of S&-semilattices in 

&. The schizophrenic object T = R/Z for Pontryagin duality & e CH Ab between -- - - -- 
&J and the category CH Ab of compact Hausdorff abelian groups [14, VI.4.91 then - -- 
yields a schizophrenic object Tm (6.3). As an &-object, r” has 0 in (R/Z, +, 0) = T 

selected by the nullary operation. Then T m is a compact Hausdorff &-algebra. The 
- 

class Cfib is thus axiomatized as the category of compact Hausdorff a-algebras. -- -- 
One obtains 

%_( ,I”) : a, e Cfib : Cfib( -- $7 _- -- (8.2) 

as the regularization of Pontryagin duality. For an &-monoid G, the dual &( G, T”O ) 

is the set G* of semicharacters of G in the notation of [lo, Definition 5.31. 
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